- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
02
- Author / Contributor
- Filter by Author / Creator
-
-
Barbre, Zachary (2)
-
Li, Gang (2)
-
Aslam, Laeeq (1)
-
Bounaim, Doha (1)
-
Davis, John (1)
-
Mouafik, Sara (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This study proposes an intelligent techno-economic assessment framework for wind energy end users, using a novel dual-input convolutional bidirectional long short-term memory (Dual-ConvBiLSTM) architecture to predict dynamic levelized cost of energy (LCOE). The proposed architecture separates weight matrices for wind supervisory control and data acquisition (SCADA) data and financial data. This allows the model to integrate both data streams at every time step through a custom dual-input cell. This approach is compared with five baseline architectures: Recurrent Neural Network (RNN), LSTM, BiLSTM, ConvLSTM, and ConvBiLSTM, which process data through separate parallel branches and concatenate outputs before final prediction. The Dual-ConvBiLSTM achieves an LCOE estimate of $4.0391 cents/kWh, closest to the actual value of $4.0450 cents/kWh, with a root mean squared error reduction of 51.8% compared to RNN, 47.0% to LSTM, 40.0% to BiLSTM, 36.7% to ConvLSTM, and 34.4% to ConvBiLSTM, demonstrating superior capability in capturing complex interactions between SCADA data and financial parameters. This intelligent framework potentially enhances economic assessment and enables end users to accelerate renewable energy deployment through more reliable financial prediction.more » « lessFree, publicly-accessible full text available November 11, 2026
-
Barbre, Zachary; Li, Gang (, Algorithms)This paper presents an innovative approach to wind energy forecasting through the implementation of an extended long short-term memory (xLSTM) model. This research addresses fundamental limitations in time-sequence forecasting for wind energy by introducing architectural enhancements to traditional LSTM networks. The xLSTM model incorporates two key innovations: exponential gating with memory mixing and a novel matrix memory structure. These improvements are realized through two variants, i.e., scalar LSTM and matrix LSTM, which are integrated into residual blocks to form comprehensive architectures. The xLSTM model was validated using SCADA data from wind turbines, with rigorous preprocessing to remove anomalous measurements. Performance evaluation across different wind speed regimes demonstrated robust predictive capabilities, with the xLSTM model achieving an overall coefficient of determination value of 0.923 and a mean absolute percentage error of 8.47%. Seasonal analysis revealed consistent prediction accuracy across varied meteorological patterns. The xLSTM model maintains linear computational complexity with respect to sequence length while offering enhanced capabilities in memory retention, state tracking, and long-range dependency modeling. These results demonstrate the potential of xLSTM for improving wind power forecasting accuracy, which is crucial for optimizing turbine operations and grid integration of renewable energy resources.more » « lessFree, publicly-accessible full text available April 1, 2026
An official website of the United States government
